Fundamentals of

Database

5th Edition

Elmasri / Navathe

Chapter 20

Fundanrentals of

Dabas

Elmasri ' Navathe

PEARSON

Addison
Wesley

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Chapter Outline

1 Overview of O-O Concepts

2 O-0 Identity, Object Structure and Type
Constructors

3 Encapsulation of Operations, Methods and
Persistence

4 Type and Class Hierarchies and Inheritance

5 Complex Objects
6 Other O-O Concepts
7/ Summary & Current Status

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Slide 20- 3

Introduction

" Traditional Data Models:
= Hierarchical
= Network (since mid-60’s)
= Relational (since 1970 and commercially since 1982)
= (Object Oriented (OO) Data Models since mid-90’s
= Reasons for creation of Object Oriented Databases
= Need for more complex applications
= Need for additional data modeling features
" |ncreased use of object-oriented programming languages

= Commercial OO Database products —

= Several in the 1990’s, but did not make much impact on
mainstream data management

Slide 20- 4

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

History of OO Models and Systems

® | anguages:
= Simula (1960’s)
= Smalltalk (1970’s)
" C++ (late 1980’s)
= Java (1990’s and 2000’s)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 20- 5

History of OO Models and Systems
(contd.)

= Experimental Systems:
= QOrion at MCC
" RIS at H-P labs
" Open-O0DB at T.I.
= ODE at ATT Bell labs
" Postgres - Montage - lllustra at UC/B
" Encore/Observer at Brown

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe S"de 20' 6

History of OO Models and Systems
(contd.)

= Commercial OO Database products:
"= Ontos
= Gemstone
= 02 (-> Ardent)
" Objectivity
" Objectstore (-> Excelon)
" Versant
" Poet
= Jasmine (Fujitsu — GM)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 20- 7

20.1 Overview of Object-Oriented
Concepts(1)

= Main Claim:

"= OO databases try to maintain a direct correspondence
between real-world and database objects so that objects do
not lose their integrity and identity and can easily be
identified and operated upon

= Object:
= Two components:
= state (value) and behavior (operations)
= Similar to program variable in programming language,

except that it will typically have a complex data structure as
well as specific operations defined by the programmer

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 20- 8

Overview of Object-Oriented Concepts (2)

" |In OO databases, objects may have an object
structure of arbitrary complexity in order to
contain all of the necessary information that
describes the object.

" |n contrast, in traditional database systems,
iInformation about a complex object is often
scattered over many relations or records, leading
to loss of direct correspondence between a real-
world object and its database representation.

Slide 20- 9

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Overview of Object-Oriented Concepts (3)

®" The internal structure of an object in OOPLs
iIncludes the specification of instance variables,
which hold the values that define the internal
state of the object.

" An instance variable is similar to the concept of
an attribute, except that instance variables may
be encapsulated within the object and thus are
not necessarily visible to external users

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe S"de 20' 1 0

UVCIVICW O UDJCCL-UIICTIICU LOUTCCPLS \F)

= Some OO models insist that all operations a user
can apply to an object must be predefined. This
forces a complete encapsulation of objects.

" To encourage encapsulation, an operation is
defined in two parts:
" signature or interface of the operation, specifies

the operation name and arguments (or
parameters).

= method or body, specifies the implementation of
the operation.

Slide 20- 11

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Overview of Object-Oriented Concepts (5)

= Operations can be invoked by passing a
message to an object, which includes the
operation name and the parameters.

" The object then executes the method for that
operation.

" This encapsulation permits modification of the
internal structure of an object, as well as the
iImplementation of its operations, without the need
to disturb the external programs that invoke these
operations

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe S"de 20' 12

Overview of Object-Oriented Concepts (6)

= Some OO systems provide capabilities for
dealing with multiple versions of the same object
(a feature that is essential in design and
engineering applications).
" For example, an old version of an object that

represents a tested and verified design should be
retained until the new version is tested and

verified:

= very crucial for designs in manufacturing process
control, architecture , software systems

Slide 20- 13

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Overview of Object-Oriented Concepts (7)

= Operator polymorphism:

= This refers to an operation’s ability to be applied to
different types of objects; in such a situation, an
operation name may refer to several distinct

implementations, depending on the type of objects
it is applied to.

" This feature is also called operator overloading

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe S"de 20' 14

20.2 Object ldentity, Object Structure, and
Type Constructors (1)

" Unique Identity:
"= An OO database system provides a unique identity
to each independent object stored in the database.

* This unique identity is typically implemented via a
unique, system-generated object identifier, or OID

® The main property required of an OID is that it be
immutable

= Specifically, the OID value of a particular object
should not change.

" This preserves the identity of the real-world object
being represented.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe S"de 20' 15

Object Identity, Object Structure, and
Type Constructors (2)

= Type Constructors:

" |[n OO databases, the state (current value) of a complex
object may be constructed from other objects (or other
values) by using certain type constructors.

" The three most basic constructors are atom, tuple, and
set.

= Other commonly used constructors include list, bag, and
array.

" The atom constructor is used to represent all basic atomic
values, such as integers, real numbers, character strings,
Booleans, and any other basic data types that the system
supports directly.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe S"de 20' 1 6

Obiject Identity, Object Structure, and
Type Constructors (3)

= Example 1

" One possible relational database state
corresponding to COMPANY schema

EMPLOYEE | FNAME | MINIT | LNAME SSN BDATE ADDRESS SEX | SALARY | SUPERSSN |DNO
John B Smith 123466789 | 1965-01-09 731 Fondren, Houston, TX M 30000 333445555 5
Frankiin T Wong 333445555 | 1955-12-08 638 Voss, Houston, TX M 40000 888665555 | 5
Alicia J Zelaya 999887777 | 1968-07-19 3321 Castle, Spring, TX F 25000 987654321 4
Jennifer S Wallace | 987654321 | 1941-06-20 291 Berry, Bellaire, TX F 43000 888665555 | 4
Ramesh K Narayan | 666884444 | 1962-09-15 975 Fire Oak, Humble, TX M 38000 333445555 | ©
Joyce A English | 453453453 | 1972-07-31 5631 Rice, Houston, TX E 25000 333445555 |
Ahmad v Jabbar 987987987 | 1969-03-29 980 Dallas, Houston, TX M 25000 987654321 4
James E Borg 888665555 | 1937-11-10 450 Stone, Houston, TX M 55000 null 1

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe S"de 20' 17

Obiject Identity, Object Structure, and
Type Constructors (4)

= Example 1 (contd.):

DEPT_LOCATIONS DNUMBER | DLOCATION
1 Houston
4 Stafford
IEPAHTMENT DNAME DNUMBER | MGRSSN MGRSTARTDATE 5 Bellaire
Research 5 333445555 1988-05-22 5 Sugariand
Administration 4 987654321 1995-01-01 5 Houston
Headquarters 1 888665555 1981-06-19
WORKS_ON ESSN | PNO | HOURS
123466789 1 325
123456789 2 75
666884444 3 400
453453453 1 200
453453433 2 200 PROJECT PNAME PNUMBER | PLOCATION | DNUM
3oouees | 2 | 100 ProcuctX 1 Belaie 5
ko5 | 8 | 100 Producty 2 Swgartand | 5
LS L ProductZ 3 Houston 5
304555 | 20 100 Computerization 10 Stafford 4
90887777 | %0 00 Reorganization 2 Houston 1
SRR W Wl Nebenefts 2 Stfford 4
987987987 10 360
987987987 Kl 50
987654321 30 200
987654321 20 150
888665555 20 null

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Slide 20- 18

Obiject Identity, Object Structure, and
Type Constructors (5)

= Example 1 (contd.)

DEPENDENT ESSN DEPENDENT_NAME | SEX| BDATE RELATIONSHIP

333445555 Alice F | 1986-04:05 DAUGHTER
333445555 Theodore M | 19831025 SON
333445555 Joy F | 19580503 SPOUSE
087654321 Abrer M | 194202:08 SPOUSE
123456789 Michae! M | 19880104 SON
123456789 Alce Fo| 198812:80 DAUGHTER
123456789 Eizabeth F | 1970505 SPOUSE

Copyright © 2007 Ramez Elm

asri and Shamkant B. Navathe

Slide 20- 19

Object Identity, Object Structure, and
Type Constructors (6)

= Example 1 (contd.)

= We use i, i,, 15, . . . o stand for unique system-
generated object identifiers. Consider the following

objects:
= 0, = (I, atom, ‘Houston’)
= 0, = (I,, atom, ‘Bellaire’)
= 0, = (I3, atom, ‘Sugarland’)
= 0, = (i,, atom, 5)
= 0, = (I, atom, ‘Research’)
= 0, = (I, atom, ‘1988-05-22’)
= (I,

I, set, {i1, 12, 13})

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe S"de 20' 20

Object Identity, Object Structure, and
Type Constructors (7)

= Example 1(contd.)
= 0, = (Ig, tuple, <dname:i,, dnumber:i,, mgr:i,,
locations:i,, employees:i,,, projects:i,, >)

= 0, = (ig, tuple, <manager:i,2, manager_start_date:i,>)
=0, = (g, Set, {ip, g, Iy})

" 0y = (Iy, set{ly, Ig, Ip})
= 0, = (Ip, tuple, <fname:ig, minit:iy, Iname:iy,
ssn:,, . . ., salary:iy, supervi-sor:i,, dept:i;>)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe S"de 20' 21

Obiject Identity, Object Structure, and
Type Constructors (8)

= Example 1 (contd.)

" The first six objects listed in this example
represent atomic values.

" Object seven is a set-valued object that represents
the set of locations for department 5; the set refers
to the atomic objects with values {'Houston’,
‘Bellaire’, ‘Sugarland’}.

" Object 8 is a tuple-valued object that represents
department 5 itself, and has the attributes
DNAME, DNUMBER, MGR, LOCATIONS, and so

on.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe S"de 20' 22

Object Identity, Object Structure, and
Type Constructors (9)

= Example 2:

= This example illustrates the difference between the two
definitions for comparing object states for equality.

= 0o, = (I, tuple, <a,:i,, a,:ig>)
= 0, = (i, tuple, <a, |5, a,:l>)
= 0, = (5, tuple, <a,:i,, a,iz>)
= o,= (i, atom, 10)
= 0, = (I, atom, 10)
= 0, = (I, atom, 20)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe S"de 20' 23

Obiject Identity, Object Structure, and
Type Constructors (10)

= Example 2 (contd.):

= In this example, The objects o1 and 02 have equal
states, since their states at the atomic level are the
same but the values are reached through distinct
objects 04 and 05.

" However, the states of objects o1 and 03 are
identical, even though the objects themselves are
not because they have distinct OIDs.

= Similarly, although the states of 04 and 05 are
identical, the actual objects 04 and 05 are equal
but not identical, because they have distinct OIDs.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe S"de 20' 24

Object Identity, Object Structure, and
Type Constructors (11

) e (0 =
le

Mgr | Locations | Employees | Projects |)

|
i i

S

]
s(0) w@) W) @) O
atom atom tuple set set set
Vs Vg Vg vz V1o Vit
Research 5 l—gl_l

'1' [2‘ ’3‘ hig= -+ hg UTEERE

atom atom atom tuple tuple tuple

Vi Va V3

Houston Bellaire Sugarland

(Manager Manager_start_date |>
4
atom
Ve
1988-05-22 [fa’"
tuple tuple

(Fname | Minit | Lname |--- Dept 9—

Figure 20.1 i
Representation of a i PR FASCI
DEPARTMENT complex 8 N 0

object as a graph.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe S"de 20' 25

Object Identity, Object Structure, and
Type Constructors (12)

define type EMPLOYEE

tuple (Fname: string;
Minit: char;
Lname: string;
Ssn: string;
Birth_date: DATE;
Address: string;
Sex: char;
Salary: float;
Supervisor: EMPLOYEE;
Dept: DEPARTMENT;

define type DATE

tuple (Year: integer;
Month: integer;
Day: integer;);

define type DEPARTMENT

tuple (Dname: string;
Dnumber: integer,;
Mgr: tuple (Manager: EMPLOYEE; Figure 20.2

Start_date: DATE;); Specifying the object types

Locations: set(string); EMPLOYEE, DATE, and
Employees: set(EMPLOYEE); DEPARTMENT using type
Projects set(PROJECT);); constructors.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe S"de 20' 26

20.3 Encapsulation of Operations,
Methods, and Persistence (1)

" Encapsulation

" One of the main characteristics of OO languages
and systems

" Related to the concepts of abstract data types
and information hiding in programming
languages

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe S"de 20' 27

Encapsulation of Operations, Methods,
and Persistence (2)

= Specifying Object Behavior via Class
Operations:

" The main idea is to define the behavior of a type
of object based on the operations that can be
externally applied to objects of that type.

" In general, the implementation of an operation
can be specified in a general-purpose
programming language that provides flexibility and
power in defining the operations.

Slide 20- 28

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Encapsulation of Operations, Methods,
and Persistence (3)

= Specifying Object Behavior via Class Operations
(contd.):

" For database applications, the requirement that all
objects be completely encapsulated is too
stringent.

" One way of relaxing this requirement is to divide
the structure of an object into visible and hidden
attributes (instance variables).

Slide 20- 29

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Encapsulation of Operations, Methods,

and Persistence (4)

define class EMPLOYEE Figure 20.3
type tuple (Fname: string; Adding operations to
Minit: char; the definitions of
Lname: string; EMPLOYEE and
Ssn: string; DEPARTMENT.
Birth_date: DATE;
Address: string;
Sex: char,
Salary: float;
Supervisor: EMPLOYEE;
Dept: DEPARTMENT;):
operations age: integer;
create_emp: EMPLOYEE;
destroy_emp: boolean;
end EMPLOYEE;
define class DEPARTMENT
type tuple (Dname: string;
Dnumber: integer;
Mgr: tuple (Manager: EMPLOYEE;
Start_date: DATE;);
Locations: set(string);
Employees: set(EMPLOYEE);
Projects set(PROJECT););
operations no_of_emps: integer;
create_dept: DEPARTMENT;
destroy_dept: boolean;

assign_emp(e: EMPLOYEE): boolean;

(* adds an employee to the department *)

remove_emp(e: EMPLOYEE): boolean;

(* removes an employee from the department *)
end DEPARTMENT;

Slide 20- 30

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Encapsulation of Operations, Methods,
and Persistence (5)

= Specifying Object Persistence via Naming and
Reachability:

= Naming Mechanism:
" Assign an object a unique persistent name through which it
can be retrieved by this and other programs.
= Reachability Mechanism:
= Make the object reachable from some persistent object.

= An object B is said to be reachable from an object A if a
sequence of references in the object graph lead from object A

to object B.

Slide 20- 31

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Encapsulation of Operations, Methods,
and Persistence (6)

= Specifying Object Persistence via Naming and
Reachability (contd.):

" |n traditional database models such as relational
model or EER model, all objects are assumed to

be persistent.
" In OO approach, a class declaration specifies only
the type and operations for a class of objects. The

user must separately define a persistent object of
type set (DepartmentSet) or list (DepartmentList)
whose value is the collection of references to all
persistent DEPARTMENT objects

Slide 20- 32

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Encapsulation of Operations, Methods,
and Persistence (7)

define class DEPARTMENT_SET: Figure 20.4
type set (DEPARTMENT); Creating persistent
operations add_dept(d: DEPARTMENT): boolean; objects by naming

(* adds a department to the DEPARTMENT_SET object *) and reachability.

remove_dept(d: DEPARTMENT): boolean;

(* removes a department from the DEPARTMENT_SET object *)
create_dept_set: DEPARTMENT_SET;
destroy_dept_set: boolean;

end DepartmentSet;

persistent name ALL_DEPARTMENTS: DEPARTMENT_SET;
(* ALL_DEPARTMENTS is a persistent named object of type DEPARTMENT_SET *)

d:= create_dept;
(* create a new DEPARTMENT object in the variable d *)

b:= ALL_DEPARTMENTS.add_dept(d);
(* make d persistent by adding it to the persistent set ALL_DEPARTMENTS *)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe S"de 20' 33

20.4 Type and Class Hierarchies and
Inheritance (1)

" Type (class) Hierarchy

= Atype in its simplest form can be defined by giving
it a type name and then listing the names of its
visible (public) functions

= When specitying a type in this section, we use the
following format, which does not specity
arguments of functions, to simplify the discussion:

* TYPE_NAME: function, function, . . ., function
= Example:
= PERSON: Name, Address, Birthdate, Age, SSN

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe S"de 20' 34

Type and Class Hierarchies and
Inheritance (2)

= Subtype:

= When the designer or user must create a new type
that is similar but not identical to an already
defined type

= Supertype:
= |t inherits all the functions of the subtype

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe S"de 20' 35

Type and Class Hierarchies and
Inheritance (3)

= Example (1):
= PERSON: Name, Address, Birthdate, Age, SSN

= EMPLOYEE: Name, Address, Birthdate, Age, SSN,
Salary, HireDate, Seniority

= STUDENT: Name, Address, Birthdate, Age, SSN,
Major, GPA

= OR:

* EMPLOYEE subtype-of PERSON: Salary,
HireDate, Seniority

= STUDENT subtype-of PERSON: Major, GPA

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe S"de 20' 36

Type and Class Hierarchies and
Inheritance (4)

= Example (2):
= Consider a type that describes objects in plane geometry,
which may be defined as follows:
= GEOMETRY_OBJECT: Shape, Area, ReferencePoint

= Now suppose that we want to define a number of
subtypes for the GEOMETRY_OBJECT type, as follows:
= RECTANGLE subtype-of GEOMETRY_OBJECT: Width,
Height
= TRIANGLE subtype-of GEOMETRY_OBJECT: Sidef,
Side2, Angle
" CIRCLE subtype-of GEOMETRY_OBJECT: Radius

Slide 20- 37

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Type and Class Hierarchies and
Inheritance (5)

= Example (2) (contd.):

" An alternative way of declaring these three
subtypes is to specify the value of the Shape
attribute as a condition that must be satisfied for
objects of each subtype:

* RECTANGLE subtype-of GEOMETRY_OBJECT
(Shape=‘rectangle’): Width, Height

= TRIANGLE subtype-of GEOMETRY_OBJECT
(Shape=‘triangle’): Side1, Side2, Angle

= CIRCLE subtype-of GEOMETRY_OBJECT
(Shape=‘circle’): Radius

Slide 20- 38

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Type and Class Hierarchies and
Inheritance (6)

= Extents:

" |n most OO databases, the collection of objects in an extent
has the same type or class.

= However, since the majority of OO databases support types,
we assume that extents are collections of objects of the
same type for the remainder of this section.

= Persistent Collection:

= This holds a collection of objects that is stored permanently
in the database and hence can be accessed and shared by
multiple programs

" Transient Collection:

" This exists temporarily during the execution of a program
but is not kept when the program terminates

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe S"de 20' 39

20.5 Complex Objects (1)

= Unstructured complex object:

" These is provided by a DBMS and permits the storage and
retrieval of large objects that are needed by the database
application.

= Typical examples of such objects are bitmap images and
long text strings (such as documents); they are also
known as binary large objects, or BLOBs for short.

" This has been the standard way by which Relational
DBMSs have dealt with supporting complex objects,

leaving the operations on those objects outside the
RDBMS.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe S"de 20' 40

Complex Objects (2)

= Structured complex object:

= This differs from an unstructured complex object in
that the object’s structure is defined by repeated
application of the type constructors provided by
the OODBMS.

" Hence, the object structure is defined and known
to the OODBMS.

* The OODBMS also defines methods or operations
on it.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe S"de 20' 41

20.6 Other Objected-Oriented Concepts
(1)

= Polymorphism (Operator Overloading):

" This concept allows the same operator nhame or
symbol to be bound to two or more different
implementations of the operator, depending on
the type of objects to which the operator is applied

" For example + can be:
= Addition in integers
= Concatenation in strings (of characters)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe S"de 20' 42

Other Objected-Oriented Concepts (2)

= Multiple Inheritance and Selective Inheritance

= Multiple inheritance in a type hierarchy occurs
when a certain subtype T is a subtype of two (or
more) types and hence inherits the functions
(attributes and methods) of both supertypes.

" For example, we may create a subtype
ENGINEERING_MANAGER that is a subtype of
both MANAGER and ENGINEER.

* This leads to the creation of a type lattice rather
than a type hierarchy.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe S"de 20' 43

Other Objected-Oriented Concepts (3)

= Versions and Configurations

" Many database applications that use OO systems require
the existence of several versions of the same object

= There may be more than two versions of an object.
= Configuration:

= A configuration of the complex object is a collection
consisting of one version of each module arranged in such
a way that the module versions in the configuration are
compatible and together form a valid version of the complex
object.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe S"de 20' 44

20.7 Summary (1)

= Object identity:
" Objects have unique identities that are
independent of their attribute values.
" Type constructors:

" Complex object structures can be constructed by
recursively applying a set of basic constructors,
such as tuple, set, list, and bag.

" Encapsulation of operations:

= Both the object structure and the operations that
can be applied to objects are included in the object
class definitions.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe S"de 20' 45

Summary (2)

" Programming language compatibility:
= Both persistent and transient objects are handled uniformly.

Objects are made persistent by being attached to a
persistent collection.

= Type hierarchies and inheritance:

= Object types can be specified by using a type hierarchy,
which allows the inheritance of both attributes and methods
of previously defined types.

= Extents:

= All persistent objects of a particular type can be stored in an
extent. Extents corresponding to a type hierarchy have
set/subset constraints enforced on them.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe S"de 20' 46

Summary (3)

= Support for complex objects:

= Both structured and unstructured complex objects
can be stored and manipulated.

" Polymorphism and operator overloading:

* Operations and method names can be overloaded
to apply to different object types with different
iImplementations.

" Versioning:

= Some OO systems provide support for maintaining
several versions of the same object.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe S"de 20' 47

Current Status

= OODB market growing very slowly these days.

"= 0O-0O ideas are being used in a large number of
applications, without explicitly using the OODB platform to
store data.

= Growth:

= O-0 tools for modeling and analysis, O-O Programming
Languages like Java and C++

= Compromise Solution Proposed:

= Object Relational DB Management (Informix Universal
Server, Oracle 10i, IBM’s UDB, DB2/1l ...)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe S"de 20' 48

	PowerPoint Presentation
	Chapter 20
	Chapter Outline
	Introduction
	History of OO Models and Systems
	History of OO Models and Systems (contd.)
	Slide 7
	20.1 Overview of Object-Oriented Concepts(1)
	Overview of Object-Oriented Concepts (2)
	Overview of Object-Oriented Concepts (3)
	Overview of Object-Oriented Concepts (4)
	Overview of Object-Oriented Concepts (5)
	Overview of Object-Oriented Concepts (6)
	Overview of Object-Oriented Concepts (7)
	20.2 Object Identity, Object Structure, and Type Constructors (1)
	Object Identity, Object Structure, and Type Constructors (2)
	Object Identity, Object Structure, and Type Constructors (3)
	Object Identity, Object Structure, and Type Constructors (4)
	Object Identity, Object Structure, and Type Constructors (5)
	Object Identity, Object Structure, and Type Constructors (6)
	Object Identity, Object Structure, and Type Constructors (7)
	Object Identity, Object Structure, and Type Constructors (8)
	Object Identity, Object Structure, and Type Constructors (9)
	Object Identity, Object Structure, and Type Constructors (10)
	Object Identity, Object Structure, and Type Constructors (11)
	Object Identity, Object Structure, and Type Constructors (12)
	20.3 Encapsulation of Operations, Methods, and Persistence (1)
	Encapsulation of Operations, Methods, and Persistence (2)
	Encapsulation of Operations, Methods, and Persistence (3)
	Encapsulation of Operations, Methods, and Persistence (4)
	Encapsulation of Operations, Methods, and Persistence (5)
	Encapsulation of Operations, Methods, and Persistence (6)
	Encapsulation of Operations, Methods, and Persistence (7)
	20.4 Type and Class Hierarchies and Inheritance (1)
	Type and Class Hierarchies and Inheritance (2)
	Type and Class Hierarchies and Inheritance (3)
	Type and Class Hierarchies and Inheritance (4)
	Type and Class Hierarchies and Inheritance (5)
	Type and Class Hierarchies and Inheritance (6)
	20.5 Complex Objects (1)
	Complex Objects (2)
	20.6 Other Objected-Oriented Concepts (1)
	Other Objected-Oriented Concepts (2)
	Other Objected-Oriented Concepts (3)
	20.7 Summary (1)
	Summary (2)
	Summary (3)
	Current Status

