JSON

The x In Ajax

Douglas Crockford
Yahoo! Inc.



YAHOO [S HIRING
DEVELOPERS

Ajax, PHP, DHTML/XHTML, Javascript,
CSS, Actionscript / Flash

Josie Aguada
JAGUADA@YAHOO-INC.COM



Data Interchange

* The key idea In Ajax.
* An alternative to page replacement.
* Applications delivered as pages.

* How should the data be delivered?



History of Data Formats

e Ad Hoc
e Database Model
* Document Model

* Programming Language Model



JSON

* JavaScript Object Notation
* Minimal
* Textual

* Subset of JavaScript



JSON

* A Subset of ECMA-262 Third Edition.
* Language Independent.

* Text-based.

* Light-weight.

* Easy to parse.



JSON Is Not...

* |[SON is not a document format.
* JSON is not a markup language.
* JSON is not a general serialization
format.
No cyclical/recurring structures.

No invisible structures.
No functions.



History

® 1999 ECMAScript Third Edition

e 2001 State Software, Inc.

e 2002 JSON.org
e 2005 Ajax

* 2006 RFC 4627



* Chinese
* English

* French

* German
* |talian

®* Japanese
e Korean

Languages




Languages

* ActionScript * Perl

e C/C++ * Objective-C

* C# * Objective CAML
* Cold Fusion * PHP

* Delphi * Python

= * Rebol

* Erlang * Ruby

* Java * Scheme

* Lisp * Squeak



Object Quasi-Literals

* JavaScript
* Python

* NewtonScript



* Strings
* Numbers
® Booleans

* Objects
* Arrays

° hull

VEIEE



Value

value

string

number

object

array

true

false

null




Strings

* Sequence of 0 or more Unicode
characters

* No separate character type

A character Is represented as a string
with a length of 1

* Wrapped in "double quotes"
* Backslash escapement



Any UNICODE character except

" or \ orcontrol character

o quotation mark

carriage return

horizontal tab

GIO

CIOIOXC

4 hexadecimal digits




Numbers

* Integer
® Real
® Scientific

* No octal or hex

* No NaN or Infinity
Use null instead



Number

number




Booleans

°* true
* false



hull

* A value that isn't anything



Object

* Objects are unordered containers of
key/value pairs

* Objects are wrapped in { }
* , separates key/value pairs
* : separates keys and values
e Keys are strings

* Values are JSON values

struct, record, hashtable, object



Object

object
({) string |—®—| value ®
()




Object

{"name":"Jack B. Nimble", "at large":
true, "grade":"A", "level":3, "format":
{"type":"rect", "width":1920,
"height":1080, "interlace":false,
"framerate":24}}



Object

"name" : "Jack B. Nimble",

"at large": true,

Ilgradell : "A",

"format": {
Iltypell : "FECt",
"width" : 1920,
"height": 1080,

"interlace": false,
"framerate": 24



Array

* Arrays are ordered sequences of
values

* Arrays are wrapped in []
* , separates values

* JSON does not talk about indexing.

An implementation can start array
indexing at 0 or 1.



Array

array
()




Array

[ "Sunday", "Monday", "Tuesday",
"Wednesday", "Thursday",
"Friday", "Saturday"]

[OI '11 0]1
[1, 0, 0],
[6, 0, 1]



Arrays vs Objects

* Use objects when the key names are
arbitrary strings.

* Use arrays when the key names are
sequential integers.

* Don't get confused by the term
Associative Array.



MIME Media Type

application/json



Character Encoding

e Strictly UNICODE.
e Default: UTF-8.

e UTF-16 and UTF-32 are allowed.



Versionless

* ]SON has no version number.

* No revisions to the JSON grammar
are anticipated.

* ][SON is very stable.



WIES

* A JSON decoder must accept all well-
formed JSON text.

* A JSON decoder may also accept non-
JSON text.

* A JSON encoder must only produce
well-formed JSON text.

* Be conservative in what you do, be
liberal in what you accept from
others.



Supersets

* YAML Is a superset of JSON.
A YAML decoder is a JSON decoder.

* JavaScript is a superset of JSON.
A JavaScript compiler is a JSON decoder.

* New programming languages based
on JSON.



JSON Is the X Iin Ajax



JSON In Ajax

* HTML Delivery.

* JSON data is built into the page.
<html>. ..
<script>
var data = { ... JSONdata ... };
</script>...
</html>



JSON In Ajax

* XMLHttpRequest

Obtain responseText
Parse the responseText

responseData = eval(
'"'(' + responseText + ')');

responseData =
responseText.parseJSON();



JSON In Ajax

* |s |t safe to use eval with
XMLHttpRequest?

* The JSON data comes from the same
server that vended the page. eval of
the data is no less secure than the
original html.

* |If In doubt, use string.parseJSON
instead of eval.



JSON In Ajax

e Secret <iframe>

* Request data using form.submit to the
<iframe> target.

* The server sends the JSON text embedded
In a script in a document.
<html><head><script>
document.domailn = 'penzance.com';
parent.deliver({ ... JSONtext ... });
</script></head></html>

* The function deliver is passed the value.



JSON In Ajax

* Dynamic script tag hack.

* Create a script node. The src url
makes the request.

* The server sends the JSON text
embedded in a script.

deliver({ ... JSONtext ... }),

* The function deliver is passed the
value.

* The dynamic script tag hack is
Insecure.



JSONRequest

* A new facility.

* Two way data interchange between
any page and any server.

* Exempt from the Same Origin Policy.

* Campaign to make a standard
feature of all browsers.



JSONRequest

function done(requestNr, value, exception) {

}

var request =
JSONRequest.post(url, data, done);

var request =
JSONRequest .get (url, done);

* No messing with headers.
* No cookies.
* No implied authentication.



JSONRequest

Requests are transmitted in order.
Requests can have timeouts.
Requests can be cancelled.

Connections are in addition to the
Erowser's ordinary two connections per
ost.

Support for asynchronous, full duplex
connections.



JSONRequest

* Tell your favorite browser maker

| want JSONRequest!

http://www.JSON.org/JSONRequest.html



ECMAScript Fourth Ed.

* New Methods:

Object.prototype.toJSONString

String.prototype.parseJSON

* Available now: JSON.org/json.js



supplant

var template = '<table border="{border}">"' +
'<tr><th>Last</th><td>{last}</td></tr>"' +

'<tr><th>First</th><td>{first}</td></tr>' +
'</table>';

var data = {

"first": "Carl",
"last": "Hollywood",
"border": 2

};

mydiv.innerHTML = template.supplant(data);



supplant

String.prototype.supplant = function (o) {
return this.replace(/{([*{}]1%)}/9,
function (a, b) {
var r = o[b];
return typeof r === 'string' ?
r : a;

),
};



JSONT

var rules = {

self:
'<svg><{closed} stroke="{color}" points="{points}" /></svg>',
closed: function (x) {return x ? 'polygon' : 'polyline';},

"points[*][*]"': "{$} '
};

var data = {
"color": "blue",
"closed": true,
"points": [[10,10], [20,10], [20,20], [10,20]]

};

jsonT(data, rules)

<svg><polygon stroke="blue"
points="10 10 20 10 20 20 10 20 " /></svg>



http://goessner.net/articles/jsont/

function jsonT(self, rules) {
var T = {
output: false,
init: function () {
for (var rule in rules) if (rule.substr(0,4) != "self") rules["self." + rule] = rules[rule];
return this;
}
apply: function(expr) {
var trf = function (s) {
return s.replace(/{([A-Za-z0-9_\$\.\[\]J\'@\(\)]+)}/g, function ($0, $1){
return T.processArg($1, expr);
1)
}, x = expr.replace(/\[[0-9]+\]1/g, "[*]"), res;
if (x in rules) {
if (typeof(rules[x]) == "string") res = trf(rules[x]);
else if (typeof(rules[x]) == "function") res = trf(rules[x](eval(expr)).toString());
} else res = T.eval(expr);
return res;
}I
processArg: function (arg, parentExpr) {
var expand = function (a, e) {

return (e = a.replace(/~M\$/,e)).substr(0, 4) != "self" ? ("self." + e) : e;

}, res = "'

T.output = true;

if (arg.charAt(0) == "@") res = eval(arg.replace(/@([A-za-z0-9_]+)\(([A-Za-z0-9_\$\.\[\]\']+)\)/, function($0, $1, $2){
return "rules['self." + $1 + "']J(" + expand($2,parentExpr) + ")";

)

else if (arg != "$") res = T.apply(expand(arg, parentExpr));

else res = T.eval(parentExpr);
T.output = false;
return res;

4
eval: function (expr) {
var v = eval(expr), res = "";
if (typeof(v) != "undefined") {
if (v instanceof Array) {
for (var i = 0; i < v.length; i++) if (typeof(v[i]) != "undefined") res += T.apply(expr + "[" + i + "]");
} else if (typeof(v) == "object") {
for (var m in v) if (typeof(v[m]) != "undefined") res += T.apply(expr+"."+m);
} else if (T.output) res += v;
}
return res;
}

};
return T.init().apply("self");



Some features that make it
well-suited for data transfer

It's simultaneously human- and machine-readable
format;

It has support for Unicode, allowing almost any
information in any human language to be
communicated;

The self-documenting format that describes
strlucture and field names as well as specific
values:

The strict syntax and parsing requirements that
allow the necessary parsing algorithms to remain
simple, efficient, and consistent;

The ability to represent the most general
computer science data structures: records, lists
and trees.



JSON Looks Like Data

* |[SON's simple values are the same as used in
programming languages.

* No restructuring is required: JSON's structures
look like conventional programming language
structures.

* J[SON's object is record, struct, object, dictionary,
hash, associate array...

* |[SON's array Is array, vector, sequence, list...



Arguments against JSON

* [SON Doesn't Have Namespaces.
* [ISON Has No Validator.
* |[SON Is Not Extensible.

* [ISON Is Not XML.



JSON Doesn't Have
Namespaces

* Every object is a namespace. Its set
of keys is independent of all other
objects, even exclusive of nesting.

* |[SON uses context to avoid
ambiguity, just as programming
languages do.



Namespace

* http://www.w3c.org/TR/REC-xml-names/

* In this example, there are three occurrences of the name
title within the markup, and the name alone clearly
Brovides insufficient information to allow correct processing

y a software module.

<section>

<title>Book-Signing Event</title>

<signhing>
<author title="Mr" name="Vikram Seth" />
<book title="A Suitable Boy" price="$22.95" />

</signing>

<signhing>
<author title="Dr" name="0liver Sacks" />
<book title="The Island of the Color-Blind"

price="$12.95" />
</signing>

/earnrt 1 nnans



Namespace

{"section":
"title": "Book-Signing Event",
"signing": [

{
"author": { "title": "Mr", "name": "Vikram Seth" },
"book": { "title": "A Suitable Boy",
"price": "$22.95" }
o A{
"author": { "title": "Dr", "name": "Oliver Sacks" },
"book": { "title": "The Island of the Color-Blind",
"price": "$12.95" }
}

1}

°* section.title
°* section.signing[0].author.title
* section.signing[1].book.title



JSON Has No Validator

* Being well-formed and valid is not
the same as being correct and
relevant.

* Ultimately, every application is
responsible for validating its inputs.
This cannot be delegated.

e A YAML validator can be used.



JSON is Not Extensible

* |t does not need to be.

* [t can represent any non-recurrent
data structure as is.

* |[SON is flexible. New fields can be
added to existing structures without
obsoleting existing programs.



JSON Is Not XML

* objects

® arrays

* strings

* humbers
* booleans
° hull

element
attribute
attribute string
content

* <I[CDATA[ ]]>

entities
declarations
schema
stylesheets
comments
version
namespace



Data Interchange

* JSON iIs a simple, common
representation of data.

e Communication between servers and
browser clients.

e Communication between peers.

* Language independent data
interchange.



Why the Name?

* XML is not a good data interchange
format, but it is a document
standard.

* Having a standard to refer to
eliminates a lot of squabbling.



Going Meta

* By adding one level of meta-
encoding, JSON can be made to do
the things that JSON can't do.

e Recurrent and recursive structures.

* Values beyond the ordinary base
values.



Going Meta

* Simply replace the troublesome
structures and values with an object
which describes them.

"SMETAS$": meta-type,
"value": meta-value



Going Meta

* Possible meta-types:

"label" Label a structure for
reuse.

"ref" Reuse a structure.

"class" Assocliate a class with

a structure.

"type" Associate a special
type, such as Date,
with a structure.



Browser Innovation

* During the Browser War, innovation
was driven by the browser makers.

* In the Ajax Age, innovation is being
driven by application developers.

* The browser makers are falling
behind.



The Mashup Security Problem

* Mashups are an interesting new way
to build applications.

* Mashups do not work when any of
the modules or widgets contains
iInformation that is private or

represents a connection which is
private.



The Mashup Security Problem

* JavaScript and the DOM provide
completely inadequate levels of
security.

* Mashups require a security model
that provides cooperation under
mutual suspicion.



The Mashup Security Solution

<module 1id="NAME" href="URL"
style="STYLE" />

* A module is like a restricted iframe. The
parent script is not allowed access to the
module's window object. The module's
script is not allowed access to the parent's

window object.



The Mashup Security Solution

<module id="NAME" href="URL" style="STYLE" />

* The module node presents a send method
which allows for sending a JSON string to
the module script.

* The module node can accept a receive
method which allows for receiving a JSON
string from the module script.



The Mashup Security Solution

<module id="NAME" href="URL" style="STYLE" />

* Inside the module, there is a global send
function which allows for sending a JSON
string to the outer document's script.

* Inside the module, you can define a
receive method which allows for receiving
a JSON string from the outer document's

script.



The Mashup Security Solution

<module id="NAME" href="URL" style="STYLE" />

$(Module) .receive(json) <:| send(json)
$(Module) .send(json) |::) receive(json)




The Mashup Security Solution

<module id="NAME" href="URL" style="STYLE" />

e Communiciation is permitted only
through cooperating send and
receive functions.

* The module is exempt from the
Same Origin Policy.



The Mashup Security Solution

<module id="NAME" href="URL" style="STYLE" />

* Ask your favorite browser maker for
the <module> tag.



W
W
W
JSO
\
.0
9




	JSON The x in Ajax
	YAHOO IS HIRING DEVELOPERS
	Data Interchange
	History of Data Formats
	JSON
	Slide 6
	JSON Is Not...
	History
	Languages
	Slide 10
	Object Quasi-Literals
	Values
	Value
	Strings
	String
	Numbers
	Number
	Booleans
	null
	Object
	Slide 21
	Slide 22
	Slide 23
	Array
	Slide 25
	Slide 26
	Arrays vs Objects
	MIME Media Type
	Character Encoding
	Versionless
	Rules
	Supersets
	JSON is the X in Ajax
	JSON in Ajax
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	JSONRequest
	Slide 40
	Slide 41
	Slide 42
	ECMAScript Fourth Ed.
	supplant
	Slide 45
	JSONT
	http://goessner.net/articles/jsont/
	Some features that make it well-suited for data transfer
	JSON Looks Like Data
	Arguments against JSON
	JSON Doesn't Have Namespaces
	Namespace
	Slide 53
	JSON Has No Validator
	JSON is Not Extensible
	JSON Is Not XML
	Slide 57
	Why the Name?
	Going Meta
	Slide 60
	Slide 61
	Browser Innovation
	The Mashup Security Problem
	Slide 64
	The Mashup Security Solution
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	www.JSON.org

